专注在线职业教育24年
下载APP
小程序
希赛网小程序
导航

The New Methodology

责编:jimmyde 2003-08-18

From Nothing, to Monumental, to Agile

Most software development is a chaotic activity, often characterized by the phrase "code and fix". The software is written without much of an underlying plan, and the design of the system is cobbled together from many short term decisions. This actually works pretty well as the system is small, but as the system grows it becomes increasingly difficult to add new features to the system. Furthermore bugs become increasingly prevalent and increasingly difficult to fix. A typical sign of such a system is a long test phase after the system is "feature complete". Such a long test phase plays havoc with schedules as testing and debugging is impossible to schedule.

We've lived with this style of development for a long time, but we've also had an alternative for a long time: Methodology. Methodologies impose a disciplined process upon software development with the aim of making software development more predictable and more efficient. They do this by developing a detailed process with a strong emphasis on planning inspired by other engineering disciplines - which is why I tend to refer to them as engineering methodologies.

Engineering methodologies have been around for a long time. They've not been noticeable for being terribly successful. They are even less noted for being popular. The most frequent criticism of these methodologies is that they are bureaucratic. There's so much stuff to do to follow the methodology that the whole pace of development slows down.

As a reaction to these methodologies, a new group of methodologies have appeared in the last few years. For a while these were known a lightweight methodologies, but now the accepted term is agile methodologies. For many people the appeal of these agile methodologies is their reaction to the bureaucracy of the monumental methodologies. These new methods attempt a useful compromise between no process and too much process, providing just enough process to gain a reasonable payoff.

The result of all of this is that agile methods have some significant changes in emphasis from engineering methods. The most immediate difference is that they are less document-oriented, usually emphasizing a smaller amount of documentation for a given task. In many ways they are rather code-oriented: following a route that says that the key part of documentation is source code.

However I don't think this is the key point about agile methods. Lack of documentation is a symptom of two much deeper differences:

Agile methods are adaptive rather than predictive. Engineering methods tend to try to plan out a large part of the software process in great detail for a long span of time, this works well until things change. So their nature is to resist change. The agile methods, however, welcome change. They try to be processes that adapt and thrive on change, even to the point of changing themselves.

Agile methods are people-oriented rather than process-oriented. The goal of engineering methods is to define a process that will work well whoever happens to be using it. Agile methods assert that no process will ever make up the the skill of the development team, so the role of a process is to support the development team in their work.

In the following sections I'll explore these differences in more detail, so that you can understand what an adaptive and people-centered process is like, its benefits and drawbacks, and whether it's something you should use: either as a developer or customer of software.

Predictive versus Adaptive

Separation of Design and Construction

The usual inspiration for methodologies is engineering disciplines such as civil or mechanical engineering. Such disciplines put a lot of emphasis on planning before you build. Such engineers will work on a series of drawings that precisely indicate what needs to be built and how these things need to be put together. Many design decisions, such as how to deal with the load on a bridge, are made as the drawings are produced. The drawings are then handed over to a different group, often a different company, to be built. It's assumed that the construction process will follow the drawings. In practice the constructors will run into some problems, but these are usually small.

Since the drawings specify the pieces and how they need to be put together, they act as the foundation for a detailed construction plan. Such a plan can figure out the tasks that need to be done and what dependencies exist between these tasks. This allows for a reasonably predictable schedule and budget for construction. It also says in detail how the people doing the construction work should do their work. This allows the construction to be less skilled intellectually, although they are often very skilled manually.

So what we see here are two fundamentally different activities. Design which is difficult to predict and requires expensive and creative people, and construction which is easier to predict. Once we have the design, we can plan the construction. Once we have the plan for the construction, we can then deal with construction in a much more predictable way. In civil engineering construction is much bigger in both cost and time than design and planning.

So the approach for software engineering methodologies looks like this: we want a predictable schedule that can use people with lower skills. To do this we must separate design from construction. Therefore we need to figure out how to do the design for software so that the construction can be straightforward once the planning is done.

So what form does this plan take? For many, this is the role of design notations such as the UML. If we can make all the significant decisions using the UML, we can build a construction plan and then hand these designs off to coders as a construction activity.

But here lies the crucial question. Can you get a design that is capable of turning the coding into a predictable construction activity? And if so, is cost of doing this sufficiently small to make this approach worthwhile?

All of this brings a few questions to mind. The first is the matter of how difficult it is to get a UML-like design into a state that it can be handed over to programmers. The problem with a UML-like design is that it can look very good on paper, yet be seriously flawed when you actually have to program the thing. The models that civil engineers use are based on many years of practice that are enshrined in engineering codes. Furthermore the key issues, such as the way forces play in the design, are amenable to mathematical analysis. The only checking we can do of UML-like diagrams is peer review. While this is helpful it leads to errors in the design that are often only uncovered during coding and testing. Even skilled designers, such as I consider myself to be, are often surprised when we turn such a design into software.

Another issue is that of comparative cost. When you build a bridge, the cost of the design effort is about 10% of the job, with the rest being construction. In software the amount of time spent in coding is much, much less McConnell suggests that for a large project, only 15% of the project is code and unit test, an almost perfect reversal of the bridge building ratios. Even if you lump in all testing as part of construction, then design is still 50% of the work. This raises an important question about the nature of design in software compared to its role in other branches of engineering.

These kinds of questions led Jack Reeves to suggest that in fact the source code is a design document and that the construction phase is actually the use of the compiler and linker. Indeed anything that you can treat as construction can and should be automated.

更多资料
更多课程
更多真题
温馨提示:因考试政策、内容不断变化与调整,本网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!

加群交流

公众号

客服咨询

考试资料

每日一练

咨询客服