2019 年山东水利职业学院单独招生数学考试大纲
2019 年单独招生数学考试大纲
一、考试内容和要求
(一)代数
1.集合 内容:集合的概念、集合的表示法、集合之间的关系、集合的基 本运算。
要求:(1)理解集合的概念、掌握集合的表示法、掌握集合之 间的关系(子集、真子集、相等)、掌握集合的交、并、补运算。
(2)能用恰当的符号表示集合与集合、元素与集合、命题与命 题之间的关系。
2.方程与不等式
内容:配方法、一元二次方程的解法、实数的大小、等式的性质 与证明、区间、含有绝对值的不等式的解法、一元二次不等式的解法。
要求:(1)掌握配方法,会用配方法解决有关问题。
(2)会解一元二次方程。
(3)掌握不等式的性质,会用比较法证明简单不等式。
(4)会解一元一次不等式(组),会用区间表示不等式的解集。
(5)会解形如 | ax b | c 或 | ax b | c 的含有绝对值的不等式。
(6)会解一元二次不等式。
(7)能利用不等式的知识解决简单的实际问题。
3.函数
内容:函数的概念、函数的表示方法、函数的单调性与奇偶性、 分段函数、一次函数、二次函数的图像和性质、函数的实际应用。
要求:(1)理解函数的概念及其表示法,会求一些常见函数的 定义域
(2)能由 f (x) 的表达式求出 f (ax b) 的表达式。
(3)理解函数的单调性、奇偶性的定义,掌握增函数、减函数 及奇函数、偶函数的图像特征。
(4)理解分段函数的概念,会使用分段函数。
(5)理解二次函数的概念,掌握二次函数的图像和性质。
(6)会求二次函数的解析式,会求二次函数的最值。
(7)能灵活运用二次函数解决简单的实际问题。
4.指数函数与对数函数
内容:指数(零指数、负整指数、分数指数)的概念、有理指数 幂的运算法则、指数函数的概念、图像和性质,对数的概念、性质与 运算法则,对数函数的概念、图像和性质。
要求:(1)理解有理指数的概念,会进行有理指数幂的计算。
(2)了解对数的概念,理解对数的性质和运算法则,能求一些 简单的对数值。
(3)理解指数函数、对数函数的概念,掌握其图像和性质。
(4)能运用指数函数、对数函数的知识解决简单的实际问题。
5.数列
内容:数列的概念、等差数列及其通项公式、等差中项、等差数 列前 n 项和公式、等比数列及其通项公式、等比中项、等比数列前 n 项和公式。
要求:(1)理解数列的概念和数列通项公式的意义。
(2)掌握等差数列和等差中项的概念,掌握等差数列的通项公 式及前 n 项和公式,并能解决简单的实际问题。
(3)掌握等比数列和等比中项的概念,掌握等比数列的通项公 式及前 n 项和公式,并能解决简单的实际问题。
6.平面向量
内容:向量的概念、向量的线性运算、向量直角坐标的概念、向 量坐标与点坐标之间的关系、向量的直角坐标运算、中点公式、距离 公式、向量夹角的定义、向量的内积、两向量垂直、平行的条件。 要求:
(1)理解向量的概念,会正确进行向量的线性运算(加 法、减法和数乘向量)。
(2)掌握向量的直角坐标及其与点坐标之间的关系,掌握向量 的直角坐标运算。
(3)掌握两向量垂直、平行的条件。
(4)掌握中点公式、距离公式。
(5)掌握向量夹角的定义,向量内积的定义及其直角坐标的运 算。
(6)能利用向量的知识解决简单的实际问题。
7.逻辑用语
内容:命题、量词、逻辑联结词。
要求:(1)了解命题的有关概念。
(2)了解量词的有关概念,理解全称量词和存在量词的意义, 并会用相应的符号表示。
(3)理解逻辑联结词“且”、“或”、“非”的意义。
(二)三角
内容:角的概念的推广、弧度制、任意角三角函数(正弦、余弦 和正切)的概念、同角三角函数的基本关系式、三角函数诱导公式、 三角函数(正弦和余弦)的图像和性质、正弦型函数的图像和性质、 已知三角函数值求指定范围内的角、和角公式、倍角公式、正弦定理、 余弦定理及三角形的面积公式、三角计算及应用。
要求:(1)了解终边相同的角的集合。
(2)理解弧度的意义,掌握弧度和角度的互化。
(3)理解任意角三角函数的定义,掌握三角函数在各象限的符 号和同角三角函数间的基本关系式。
(4)会用诱导公式化简三角函数式。
(5)掌握正(余)弦函数、正(余)弦型函数的图像和性质(定 义域、值域、周期性、奇偶性、单调性),会用“五点法”画正(余) 弦型函数的简
(6)会由三角函数(正弦和余弦)值求出指定范围内的角。
(7)掌握和角公式与倍角公式,会用它们进行计算、化简和证 明。
(8)会求函数 y f (sin x) 的最值。
(9)掌握正弦定理和余弦定理,会根据已知条件求三角形的边、 角及面
(10)能综合运用三角知识解决简单的实际问题。
(三)平面解析几何
内容:直线的方向向量与法向量的概念、直线方程的点向式、点 法式,直线斜率的概念、直线方程的点斜式及斜截式、一般式,两条 直线垂直与平行的条件、点到直线的距离、圆的标准方程和一般方程、 待定系数法,椭圆的标准方程和性质、双曲线的标准方程和性质、抛 物线的标准方程和性质。
要求:(1)理解直线的方向向量和法向量的概念,掌握直线方 程的点向式和点法式。
(2)了解直线的倾斜角和斜率的概念,掌握直线的点斜式、斜 截式和一般式方程。
(3)会求两曲线的交点坐标。
(4)会求点到直线的距离,掌握两条直线平行与垂直的条件。
(5)掌握圆的标准方程和一般方程以及直线与圆的位置关系, 能灵活运用它们解决有关问题。
(6)掌握待定系数法,会用待定系数法解决有关问题。
(7)掌握圆锥曲线(椭圆、双曲线、抛物线)的概念、标准方 程和性质,能灵活运用它们解决有关问题。
(四)立体几何
内容:多面体、旋转体和棱柱、棱锥、圆柱、圆锥、球的概念, 柱体、锥体、球的表面积和体积公式、平面的表示法、平面的基本性 质、空间直线与直线、直线与平面以及平面与平面的位置关系,直线 与平面、平面与平面的两种位置(平行、垂直)关系的判定与性质,点 到平面的距离、直线到平面的距离、平行平面间的距离的概念、异面 直线所成的角、直线与平面所成角、二面角的概念。
要求:(1)了解多面体、旋转体和棱柱、棱锥、圆柱、圆锥、 球的概。
(2)掌握柱体、锥体、球的表面积和体积公式,能用公式计算 简单组合体的表面积和体积。
(3)了解平面的基本性质。
(4)理解空间直线与直线,直线与平面,平面与平面的位置关 系。
(5)掌握直线与直线、直线与平面、平面与平面的两种位置(平 行、垂直)关系的判定与性质。
(6)了解点到平面的距离、直线到平面的距离、平行平面间的 距离的概念,并会解决相关的距离问题。
(7)了解异面直线所成的角、直线与平面所成的角、二面角的 概念,并会解决相关的简单问题。
(五)概率与统计初步
内容:样本空间、随机事件、基本事件、古典概型、古典概率的 概念、概率的简单性质、直方图与频率分布、总体与样本、抽样方法 (简单的随机抽样,系统抽样,分层抽样)、总体均值、标准差、用 样本均值、标准差估计总体均值、标准差。
要求:(1)了解样本空间、随机事件、基本事件、古典概型、 古典概率的概念及概率的简单性质,会应用古典概率解决一些简单的 实际问题。
(2)了解直方图与频率分布,理解总体与样本,了解抽样方法。
(3)理解总体均值、标准差,会用样本均值、标准差估计总体 均值、标准差。
(4)能运用概率、统计初步知识解决简单的实际问题。
二、试卷结构
(一)试题内容比例 代数约占 45%;三角约占 20%;平面解析几何约占 15%;立体几 何约占 10%;概率与统计初步约占 10%
(二)题型比例 选择题约占 40%;填空题约占 20%;解答题约占 40%
三、考试形式
笔试(闭卷)。
四、考试时间及分值
考试时间为 60 分钟,试卷满分 150 分。